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Abstract

This paper introduces a model and a structured procedure to optimize the internal structure (relative sizes, spacings)

and external shape (aspect ratios) of a unit PEM fuel cell so that net power is maximized. The optimization of flow

geometry is conducted for the smallest (elemental) level of a fuel cell stack, i.e., the unit PEM fuel cell, which is modeled

as a unidirectional flow system. The polarization curve, total and net power, and efficiency are obtained as functions of

temperature, pressure, geometry and operating parameters. The optimization is subjected to fixed total volume. There

are two levels of optimization: (i) the internal structure, which basically accounts for the relative thicknesses of two

reaction and diffusion layers and the membrane space, and (ii) the external shape, which accounts for the external aspect

ratios of a square section plate that contains all unit PEM fuel cell components. The available volume is distributed

optimally through the system so that the net power is maximized. Temperature and pressure gradients play important

role, especially as the fuel and oxidant flow paths increase. Numerical results show that the optimized internal structure

is ‘‘robust’’ with respect to changes in external shape. The optimized internal structure and external shape are a result of

an optimal balance between electrical power output and pumping power required to supply fuel and oxidant to the fuel

cell through the gas channels. Directions for future improvements at the PEM fuel cell stack level in flow architecture

(constructal design) are discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Fuel cell technology is well advanced, with applica-

tions in stationary power generation and in vehicles [1–

4]. Proton exchange membrane fuel cells, PEMFC, are

considered very attractive due to high efficiency and the

potential for vehicular and portable applications.

However, in order to be competitive economically with

other existing power and vehicular systems, the industry
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needs an efficient methodology for the determination of

the optimal project for maximum performance accord-

ing to desired specifications (e.g., efficiency, power,

environmental control), and therefore optimization is

one way of lowering costs. The current methodologies

are experimentally and computationally expensive for

the thermodynamic optimization of complex systems,

due to economic restrictions in the effort to develop

multiple modifications in the subsystems, without a

clearly defined direction, from the physical point of

view. An illustrative example is the application of

numerical methods to conservation partial differential

equations, in diverse phenomena such as in a fuel cell,

leading to high cost and computational time even for the

simulation of a few selected cases, what practically dis-

cards the possibility of an optimization study.
ed.
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Nomenclature

A area, m2

Ac total gas channel cross-sectional area, m2

As unit fuel cell cross-sectional area, m2

~A dimensionless area

B dimensionless constant

cp specific heat at constant pressure,

kJ kg�1 K�1

C constant, Eq. (33)

CV control volume

D Knudsen diffusion coefficient, m2 s�1

E dimensionless conversion factor, Eqs. (44)–

(46)

Dh gas channel hydraulic diameter, m

f friction factor

F Faraday constant, 96,500 C eq�1

h heat transfer coefficient, Wm�2 K�1

~h dimensionless heat transfer coefficient

HiðTiÞ molar enthalpy of formation at a tempera-

ture Ti of reactants and products, kJ kmol�1

of compound ieHiðhiÞ dimensionless molar enthalpy of formation

at a dimensionless temperature hi of reac-

tants and products

H2 PEMFC polymer electrolyte membrane fuel cell

io;a, io;c exchange current densities, Am�2

iLim;a, iLim;c limiting current densities, Am�2

I current, A
~I dimensionless current

j mass flux, kg s�1 m�2

k thermal conductivity, Wm�1 K�1

K permeability, m2

~k dimensionless thermal conductivity

L control volume length, m

Lc, Lt gas channels internal dimensions as shown

in Fig. 1, m

Lx, Ly , Lz fuel cell length, width and height, respec-

tively, m

m mass, kg

_m mass flow rate, kg s�1

M molecular weight, kg kmol�1

n equivalent electron per mole of reactant,

eqmol�1

_n molar flow rate, kmol s�1

nc number of parallel ducts in gas channel

N dimensionless global wall heat transfer

coefficient

p pressure, Nm�2

~ps perimeter of cross-section, m

P dimensionless pressure

Pr Prandtl number, lcp=k
q tortuosity

Q reaction quotient

_Q heat transfer rate, WeQ dimensionless heat transfer rate

r pore radius, m

R ideal gas constant, kJ kg�1 K�1

R universal gas constant, 8.314 kJ kmol�1 K�1

ReDh
Reynolds number based on Dh, uDhq=l

S dimensionless conversion factor, Eq. (42)

T temperature, K

u mean velocity, m s�1

~u dimensionless mean velocity

U global wall heat transfer coefficient,

Wm�2 K�1

V electrical potential, V

V volume, m3

VT total volume, m3eV dimensionless electrical potentialeVT dimensionless total volume

W electrical work, JeW dimensionless fuel cell total electrical power,

Eq. (40)eWnet dimensionless fuel cell net power, Eq. (39)eWp dimensionless required pumping power, Eq.

(41)

x axial direction, Fig. 1

y2;4;6 size constraints

½�� molar concentration of a substance,

mol l�1

Greek symbols

aa, ac anode and cathode charge transfer coeffi-

cients

b electrical resistance, X
d gas channel aspect ratio

DG molar Gibbs free energy change, kJ kmol�1

H2, Eq. (13)

DeG dimensionless Gibbs free energy change

DH molar enthalpy change, kJ kmol�1 H2

D eH dimensionless enthalpy change

DS molar entropy change, kJ kmol�1 K�1

f stoichiometric ratio

ga, gc anode and cathode charge transfer overpo-

tentials, V

gd;a, gd;c anode and cathode mass diffusion overpo-

tentials, V

gi ideal efficiency, Eq. (43)

gI first law efficiency, Eq. (44)

gII second law efficiency, Eq. (45)

gnet net efficiency, Eq. (46)

~ga, ~gc dimensionless anode and cathode charge

transfer overpotentials

~gd;a, ~gd;c dimensionless anode and cathode mass dif-

fusion overpotentials
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~gohm dimensionless fuel cell total ohmic potential

loss, Eq. (24)

h dimensionless temperature

k ionomer water content

l viscosity, Pa s

mi reaction coefficients

n dimensionless length

q density, kgm�3

r electrical conductivity, X�1 m�1

/ porosity

w dimensionless mass flow rate

Subscripts

a anode

(aq) aqueous solution

c cathode

e reversible

f fuel

(g) gaseous phase

Hþ hydrogen cation

H2 hydrogen

H2O water

i irreversible

i,a irreversible at the anode

i,c irreversible at the cathode

in control volume inlet

(l) liquid phase

m maximum with respect to fuel cell internal

structure

mm maximum with respect to fuel cell internal

and external structure

ohm ohmic

opt optimal value

out control volume outlet

ox oxidant

O2 oxygen

p polymer electrolyte membrane

ref reference level

s,a anode solid side

s,c cathode solid side

w wall

wet wetted surface

0 initial condition

1, . . ., 7 control volumes, Fig. 1

12 interaction between CV1 and CV2

23 interaction between CV2 and CV3

34 interaction between CV3 and CV4

45 interaction between CV4 and CV5

56 interaction between CV5 and CV6

67 interaction between CV6 and CV7

1 ambient

Superscript

� standard conditions [gases at 1 atm, 25 �C,
species in solution at 1 M, where M is the

molarity¼ (moles solute)/(liters solution)]
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In sum, the current available methodologies seek to

find an optimal condition from a group of candidates

arbitrarily selected. Therefore, this study is motivated by

the need to develop a methodology that provides a

structured process to synthesize fuel cell optimal ther-

modynamic configurations directly from the physical

laws. The proposed technique seeks the general direction

of flow geometry optimization subject to global con-

straints (e.g., volume), with the objective of maximizing

the net power or the net power density. This approach is

general because it may be used in conjunction with other

methods of improvement that have been demonstrated,

or will be demonstrated, e.g., new materials, and new

techniques for separating hydrogen from natural gas

inside the fuel cell (internal reforming).

The optimization of flow-system architecture is a

widespread occurrence in engineering and nature. Many

examples have been brought together under the title of

constructal theory [5], which is the thought that geo-

metry (flow architecture) is generated by the pursuit of

global performance subject to global constraints, in flow

systems the geometry of which is free to change.

According to constructal theory, the optimization of

flow architecture starts at the smallest (elemental) scale,
i.e., in this study, the PEM unit fuel cell. Irreversibilities

due to pressure drop, charge transfer and mass diffusion

are minimized together. In principle, this procedure can

be extended on a hierarchical ladder to larger and more

complex systems, to explore multi-scale packings that

use the available volume to the maximum. Earlier con-

structal designs suggest that this approach will lead to

high-density constructions with new scaling laws that

are dictated by dendritic (space-filling, fractal-like) flow

structures. Such designs promise to be robust.

In this paper the optimization is based on a relatively

simple model that is sufficiently representative of a fuel

cell, i.e., such that the physical trade-offs are clearly

present. The technical literature shows several previous

PEM fuel cell analytical and numerical models [6–11]

either with one- or two-dimensional geometry, isother-

mal and steady state operation. Zhou and Liu [12] pre-

sented a three-dimensional steady state model for

proton exchange membrane fuel cells. Among these,

two-and three-dimensional models are not suitable for

the optimization of flow geometry, because they would

require the solving of partial differential equations for

flow simulation in a very large number of flow config-

urations. No model was found in the literature that
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addresses the spatial temperature and pressure gradients

in a unit PEM fuel cell, pressure drops in the gas

channels and their effect on performance.

The geometric optimization alternative chosen in this

paper was introduced in a previous study for an alkaline

fuel cell, which divides the fuel cell into several control

volumes that correspond to the most representative parts

of the flow system [13]. All the flow phenomena that are

present are taken into account. The result is a model with

unidirectional internal flow that contains additional

three-dimensional features such as the electrode wetted

area; heat transfer between the cell, fuel, oxidant and the

surroundings, and pressure drops in the gas channels. The
Fig. 1. Model of the PE
model is represented by a system of algebraic equations,

the solution of which consists of the temperatures and

pressures of each control volume, and the polarization

and net power curves for the whole system. The model is

simple enough to insure small computational time

requirements, so that it is possible to simulate the flow in a

very large number of competing flow configurations.
2. Mathematical model

The main features of a hydrogen polymer electrolyte

membrane fuel cell (H2 PEMFC) are shown in Fig. 1.
M unit fuel cell.
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The fuel may be pure hydrogen, or a diluted hydrogen

mixture generated from a hydrocarbon reformation

process. For simplicity, the model is based on the

assumption that the fuel stream is pure hydrogen, and

that the oxidant is pure oxygen.

The fuel cell is divided into seven control volumes

that interact energetically with one another. The fuel cell

also interacts with adjacent fuel cells in a package, and/

or with the ambient. Additionally, two bipolar plates

(interconnects) are presented: these have the function of

allowing the electrons produced by the electrochemical

oxidation reaction at the anode to flow to the external

circuit or to an adjacent cell. The control volumes (CV)

are the fuel channel (CV1), the anode diffusion-backing

layer (CV2), the anode reaction layer (CV3), the poly-

mer electrolyte membrane (CV4), the cathode reaction

layer (CV5), the cathode diffusion backing layer (CV6)

and the oxidant channel (CV7).

The model consists of the conservation equations for

each control volume, and the equations accounting for

electrochemical reactions, where reactions are present.

The reversible electrical potential and power of the fuel

cell are then computed (based on the reactions) as

functions of the temperature and pressure fields deter-

mined by the model. The actual electrical potential and

power of the fuel cell are obtained by subtracting from

the reversible potential the losses due to surface over-

potentials (poor electrocatalysis), slow diffusion and all

internal ohmic losses through the cell (resistance of

individual cell components, including electrolyte mem-

brane, bipolar plates, interconnects and any other cell

components through which electrons flow). These are

functions of the total cell current (I), which is directly

related to the external load (or the cell voltage). In sum,

the total cell current is considered an independent vari-

able in this study. The following analysis is for steady-

state fuel cell operation.

Dimensionless variables are defined based on the

geometric and operating parameters of the system.

Pressures and temperatures are referenced to ambient

conditions: Pi ¼ pi=p1 and hi ¼ Ti=T1. The dimension-

less mass flow rates are defined as

w ¼ _mi

_mref

; ð1Þ

where the subscript i represents a substance that flows

through the fuel cell, and _mref is a specified reference

mass flow rate. Additional dimensionless variables are

Ni ¼
UwiV

2=3
T

_mrefcp;f
; ~Ai ¼

Ai

V 2=3
T

; ð2Þ

where subscript i indicates a substance or a location in

the fuel cell; N is the dimensionless global wall heat

transfer coefficient, and ~A is the dimensionless area. In

Eqs. (1) and (2), p1 is the ambient pressure, T1 is the
ambient temperature, and cp;i is the specific heat at

constant pressure.

The total volume of the fuel cell, VT ¼ LxLyLz, is finite

and fixed. This is a realistic design constraint, which

accounts for the finiteness of the available space and the

general push for doing the most with limited resources

(e.g., space). The maximization of performance for the

specified volume means the maximization of perfor-

mance density. The fixed length scale V 1=3
T is used for the

purpose of non-dimensionalizing all the lengths that

characterize the fuel cell geometry,

nj ¼
Lj

V 1=3
T

; ð3Þ

where the subscript j indicates a particular dimension of

the fuel cell geometry, Fig. 1.

The wall heat transfer area of one control volume is

Awi ¼ ~psLi (26 i6 6) and Awi ffi ~psLi þ LyLz (i ¼ 1; 7;
assuming that Lt � Lc in Fig. 1), where ~ps ¼ 2ðLy þ LzÞ
is the perimeter of the fuel cell cross-section. The control

volumes are Vj ¼ LyLzLj (26 j6 6) and Vj ¼ ncLcLlLz

(j ¼ 1; 7), where nc is the integer part of Ly=ðLt þ LcÞ,
i.e., the number of parallel ducts in each gas channel

(fuel and oxidant).

The fuel pressure (pf in CV1) and oxidant pressure

(pox in CV7) are assumed known and constant during

fuel cell operation. The stoichiometric ratio for an

electrode reaction is defined as the provided reactant

(mol s�1) divided by the reactant needed for the elec-

trochemical reaction of interest. In the present model,

stoichiometric ratios greater than 1 are prescribed on the

fuel side (f1) and oxidant side (f7). The mass and energy

balances for CV1 yield the temperature in CV1,

eQw1 þ wfðhf � h1Þ þ eQ12 þ eQ1ohm ¼ 0 ð4Þ

where eQwi ¼ Ni
~Awið1� hiÞ, where subscript i refers to

one of the control volumes, eQ12 ¼ ~h1~Asð1� /2Þðh2 � h1Þ,
~h1 ¼ h1V

2=3
T =ð _mrefcp;fÞ, /i are the porosities, and ~As ¼

LyLz=V
2=3
T is the dimensionless cross-sectional area of the

fuel cell. The dimensionless heat transfer rates for all the

compartments are eQi ¼ _Qi=ð _mrefcp;fT1Þ, where i ac-

counts for any of the heat transfer interactions that are

present in the model. The ohmic heating is eQiohm ¼
I2bi=ð _mrefcp;fT1Þ, where subscript i refers to a control

volume (1–7), and b (X) is the electrical resistance.

Next is the anode backing diffusion layer (CV2),

where reactions are absent. Both electrodes in a fuel cell

are porous, such that a large real wetted surface area can

be obtained to provide good contact between the elec-

trode and the electrolyte (ionomer) and, therefore, large

power densities. Although the porous medium consists

of a solid side and a fluid side, the mass of fluid in CV2 is

negligible relative to the mass of solid, therefore only the

solid is taken into account in the energy balance. The net

heat transfer rates are eQ2 ¼ �eQ12 þ eQw2 þ eQ23 þ eQ2ohm,
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where eQ23 ¼ �~ks;að1� /2Þ~Asðh2 � h3Þ=½ðn2 þ n3Þ=2�.
The dimensionless thermal conductivity is defined by
~ki ¼ kiV

1=3
T =ð _mrefcp;fÞ.

The wetted areas in the porous anode and cathode

are estimated by assuming dual-porosity electrodes, as

shown in Fig. 2. The pores are approximated as parallel

tubes with an average diameter of the same order as the

square root of the porous medium permeability, K1=2.

Therefore, the wetted area for each porous control

volume is Aj;wet ¼ 4/jLjK
�1=2
j As, where Kj are the per-

meabilities.

The hydrogen mass flow rate required for the current

(I) dictated by the external load is

_mH2
¼ _nH2

MH2
¼ I

nF
MH2

; ð5Þ

where _ni is the molar flow rate for species i, Mi the

molecular weight of species i, n the number of moles of

electrons formed in the reaction and F the Faraday

constant, 96,500 C eq�1.

Therefore, the oxygen mass flow rate needed for a

PEM fuel cell is

_mO2
¼ 1

2
_nH2

MO2
: ð6Þ

Diffusion is assumed to be the dominant transport

mechanism across the diffusion and catalyst layers. For

Knudsen flow, the fuel and oxidant mass fluxes in the

porous layers are given by [14]
Fig. 2. Cross-sectional detail of dual porosity electrodes
ji ¼ �½Dðqout � qinÞ=L�i; i ¼ 2; 6; ð7Þ

where D ¼ Bfr½8RT=ðpMÞ�1=2/qg is the Knudsen diffu-

sion coefficient, q the density, R the universal gas con-

stant, / the porosity, q the tortuosity [15,16], and B is a

correction coefficient. By using Eq. (7) and the ideal gas

model for H2 and O2, we find the pressures of the

hydrogen and oxygen that enter the catalyst layers

Pi;out ¼ Pi;in �
jiRiT1Lihi

Dip1
; i ¼ 2; 6; ð8Þ

where j2 ¼ _mH2
=A3;wet and j6 ¼ _mO2

=A5;wet, and A3;wet and

A5;wet are the wetted areas in the porous catalyst layers.

Note also that P2;in ¼ Pf and P6;in ¼ Pox. The average

pressures in CV2 and CV6 are estimated as

Pi ¼ 1
2
ðPi;in þ Pi;outÞ; i ¼ 2; 6: ð9Þ

The energy balance delivers the CV2 temperature,

h1 � h2 þ
eQ2

wH2

¼ 0: ð10Þ

In the anode reaction layer (CV3), the electrical

current is generated by the electrochemical oxidation

reaction,

H2ðgÞ ! 2Hþ
ðaqÞ þ 2e� ð11Þ

where a perfluorosulfonic acid membrane (e.g., Nafion

117 by DuPont) has been assumed in the electrolyte.
and the internal structure optimization procedure.
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CV3 is divided into two compartments, the solid and the

liquid solution that form the anode reaction layer. How-

ever, in the thermal analysis only the solid is taken into

account, because the mass of fluid in CV3 is negligible in

comparison with the mass of solid. The dimensionless

net heat transfer in CV3 is given by eQ3 ¼ �eQ23 þeQw3 þ eQ34 þ eQ3ohm. The heat transfer rate between CV3

and CV4 (the polymer electrolyte membrane) is domi-

nated by conduction, therefore eQ34 ¼ �ð1� /3Þðh3 �
h4Þ~As2~ks;a~kp=ðn4~ks;a þ n3~kpÞ.

The mass and energy balances for CV3, together with

the anode reaction equation deliver the relations _nH2
¼

_mH2
=MH2

, _nHþ ¼ 2 _nH2
, _mHþ ¼ 2 _nH2

MHþ and

eQ3 � D eH3 þ DeG3 ¼ 0; ð12Þ

where, ðD eH3;DeG3Þ ¼ _nH2
ðDH3;DG3Þ=ð _mrefcp;fT1Þ.

The dimensionless enthalpy of formation is defined

by eHi ¼ _niHi=ð _mrefcp;fT1Þ, where the subscript i refers to
a substance or a control volume. The enthalpy change

due to the anode reaction is given by DH3 ¼P
products½miHiðTiÞ� �

P
reactants½miHiðTiÞ� and We3 ¼ �DG3,

DH3 is the CV3 reaction enthalpy change (kJ kmol�1

H2); mi are the stoichiometric coefficients; HiðTiÞ is the

molar enthalpy (kJ kmol�1) of formation at a tempera-

ture Ti of reactants and products of compound i; DG3 is

the CV3 reaction Gibbs free energy change (kJ kmol�1

H2) and We3 is the maximum (reversible) electrical work

generated due to the reaction in CV3 (kJ kmol�1 H2).

The molar enthalpies of formation are obtained from

tabulated values [17,18] at T2 for H2ðgÞ and T3 for Hþ
ðaqÞ,

and at 1 atm, because DH is independent of pressure.

The reaction Gibbs free energy change, DG, is a function
of temperature, pressure and concentrations,

DG ¼ DG� þ RT lnQ; ð13Þ

where DG� ¼ DH � � TDS� is the standard Gibbs free

energy (kJ kmol�1 H2); DH � is the standard enthalpy

change (kJ kmol�1); DS� is the standard entropy change

(kJ kmol�1 K�1) [gases at 1 atm, 25 �C, species in solu-

tion at 1 M, where M is the molarity¼ (moles solute)/

(liters solution)]; R is the universal ideal gas constant,

and Q is the reaction quotient. The reaction quotient Q
has the same mathematical form as the reaction equi-

librium constant: the difference is that the terms that

appear in Q are instantaneous pressures and concen-

trations rather than equilibrium values. Therefore, in the

present reaction [Eq. (11)] the resulting expression for Q3

is Q3 ¼ ½Hþ
ðaqÞ�

2
=pH2

, where [Hþ
ðaqÞ] is the molar concen-

tration of the acid solution, (mol l�1), and pH2
¼ p2;out,

i.e., the partial pressure of H2 in atmospheres at the CV2

outlet. Recall that pure liquids or solids do not appear in

the calculation of Q3; neither does the solvent in a dilute

solution.

In a polymer electrolyte membrane, water content (k)
is described as the ratio of the number of water mole-
cules to the number of charge sites, i.e., the number of

ions, SO�
3 H

þ. Zawodzinski et al. [19] measured water

content for the Nafion 117 membrane, and found that,

for equilibrium with saturated water vapor, k ¼ 14 at 30

�C. Springer et al. [6] found that water vapor and liquid

water (in equilibrium with each other) equilibrate sepa-

rately to different membrane water contents, namely,

k ¼ 16:8 at 80 �C and k ¼ 22 at 100 �C. Because the

presence of liquid water in contact with the ionomer is

discrete rather than continuous, the water concentration

in the ionomer (within the catalyst layer) may not be

uniform. Because the present model is in essence macro-

homogeneous, it is assumed that all ingredients of the

catalyst layer are evenly distributed, and that the liquid

water product is evenly distributed. Therefore, the water

content in ionomer (within the catalyst layer) is assumed

constant: this corresponds to the value measured when

the ionomer is in contact with liquid water, or to some

average between this value and the value corresponding

to when the ionomer is in contact with saturated water

vapor [8]. Usually, the anode water content in the anode

is different than in the cathode; therefore for assumed

values of ka (anode water content) and kc (cathode water
content), and by assuming a linear variation of the water

content along the membrane thickness, the average

water content in the membrane is defined as

k ¼ ka þ kc
2

: ð14Þ

Eq. (14) allows the calculation of [Hþ
ðaqÞ] as a function of

k, namely ½Hþ
ðaqÞ� ffi qH2O

=ðkMH2OÞ for a dilute water

solution. The present model also assumes that the vol-

ume fraction of ionomer in the catalyst layer is

approximately equal to the porosity either in CV3 or

CV5, as shown in Fig. 2.

The reversible electrical potential at the anode is

given by the Nernst equation [18],

Ve;a ¼ V �
e;a �

RT3
nF

lnQ3; ð15Þ

where Ve;a ¼ DG3=ð�nF Þ and V �
e;a ¼ DG�

3=ð�nF Þ. At the

anode there are two mechanisms for potential losses: (i)

charge transfer, and (ii) mass diffusion. The potential

loss due to charge transfer is obtained implicitly

from the Butler–Volmer equation for a given current I
[20,21]

I
A3;wet

¼ io;a exp
ð1� aaÞgaF

RT3

� ��
� exp

�
� aagaF

RT3

��
;

ð16Þ

where ga is the potential loss at the anode, aa is the

anode charge transfer coefficient, and io;a is the anode

exchange current density (a function of catalyst type,

catalyst layer morphology, temperature and pressure).

The potential loss due to mass diffusion is [20]
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gd;a ¼
RT3
nF

ln 1

�
� I
A3;wetiLim;a

�
: ð17Þ

In Eq. (17) the limiting current density at the anode

(iLim;a) occurs at high values of the surface overpotential,

when the gas is completely depleted in the very thin

active catalyst layer fraction situated at the interface

with the gas diffuser, i.e., P2;out ¼ 0. Therefore, Eq. (8) is

rearranged as

iLim;a ¼
Pfp1D2nF

MH2
L2Rfh2T1

: ð18Þ

The dimensionless potentials are defined based on a

reference voltage, Vref , namely eVi ¼ Vi=Vref and ~g ¼
gi=Vref , where subscript i accounts for all the potentials

that are present in the fuel cell. The resulting electrical

potential at the anode is eVi;a ¼ eVe;a � ~ga � j~gd;aj, where
we have taken the absolute value of ~gd;a, because ~gd;a < 0

(cathodic overpotential).

Next is the analysis of the polymer electrolyte mem-

brane (CV4), which interacts with CV3, CV5 and the

ambient. In the cathode reaction layer (CV5), the reac-

tion is

1
2
O2ðgÞ þ 2e� þ 2Hþ

ðaqÞ ! H2OðlÞ ð19Þ

Eqs. (11) and (19) and the conservation of mass in CV4

require 2 _nH2
¼ _nHþ;out ¼ _nHþ ;in ¼ 2 _nO2

. In conclusion,

_nO2
¼ _nH2

, where _nO2
¼ 2 _mO2

=MO2
. Accordingly, the re-

quired oxidant mass flow rate is _mO2
¼ _mH2

MO2
=ð2MH2

Þ.
The net heat transfer in CV4 is obtained from eQ4 ¼
�eQ34 þ eQw4 þ eQ45 þ eQ4ohm and eQ45 ¼ �ð1� /5Þðh4 �
h5Þ~As2~ks;ckp=ðn4~ks;c þ n5~kpÞ. Next, the CV4 temperature is

obtained from

eQ4 þ eH ðh3ÞHþ
ðaqÞ

� eH ðh4ÞHþ
ðaqÞ

¼ 0: ð20Þ

The internal ohmic losses are usually dominated by

the low electrolyte conductivity. However, to allow us to

study the effect of varying the thickness of the reacting

layers, the model also accounts for the potential loss due

to the electrical resistance posed by the ionomer within

the porous reaction layers present in CV3 and CV5. The

ionic conductivity, r (X�1 m�1), of Nafion 117 as a

function of temperature is given by the following

empirical formula [6]:

riðhÞ ¼ exp 1268
1

303

��
� 1

hiT1

��
ð0:5139ki � 0:326Þ;

i ¼ 3; 4; 5: ð21Þ

Based on the electrical conductivities and geometry

of each compartment, the electrical resistances, b (X),
are given by

bi ¼
ni

~AsV
1=3
T rið1� /iÞ

; i ¼ 1; 2; 6; 7; ð22Þ
bi ¼
ni

~AsV
1=3
T ri/i

; i ¼ 3; 4; 5 ð/4 ¼ 1Þ: ð23Þ

Therefore, the total dimensionless ohmic loss in the

space from CV1 to CV7 is

~gohm ¼ I
Vref

X7

i¼1

bi: ð24Þ

The conductivities of the catalyst layers are given by

r3/3 and r5/5, according to Eqs. (21) and (23), which

agrees qualitatively with previously measured catalyst

layers ionic conductivities [22], i.e., the ionic conduc-

tivity increases with increasing Nafion content, which

increases as / increases in the present model. Addi-

tionally, as a quantitative example of the use of Eqs. (21)

and (23), the product r/ leads to a resistivity of 40.29

X cm, for k ¼ 14, / ¼ 0:2 and T ¼ 80 �C, which agrees

with a previously reported catalyst layer electronic

resistivity of 40 X cm [23]. The conductivities of the

diffusive layers, r2 and r6, are the carbon-phase con-

ductivities [9]. Finally, the conductivities of CV1 and

CV7, r1 and r7, are the electrical conductivities of the

bipolar plates material. Eq. (22) accounts for the void

fractions of CV1 and CV7, i.e., /1 ¼ /7 ¼ nc=ðnt þ ncÞ,
computed for any particular fuel cell internal geometry

according to Fig. 1.

The analysis in the cathode reaction layer (CV5) is

analogous to what we presented for the anode reaction

layer (CV3). This time the reaction equation is Eq. (19).

CV5 is also divided into two compartments, fluid and

solid, but in the thermal analysis, only the solid is taken

into account. The dimensionless net heat transfer in CV5

is given by eQ5 ¼ �eQ45 þ eQw5 þ eQ56 þ eQ5ohm, with
eQ56 ¼

�~ks;cð1� /6Þ~Asðh5 � h6Þ=½ðn5 þ n6Þ=2�.
The mass and energy balances in CV5, in conjunction

with Eq. (20) deliver _nHþ ;in ¼ 2 _nO2
; _nH2O;out ¼ _nO2

, and

eQ5 � D eH5 þ DeG5 ¼ 0 ð25Þ

where ðD eH5;DeG5Þ ¼ _nO2
ðDH5;DG5Þ=ð _mrefcp;fT1Þ. The

enthalpy change during cathode reaction is DH5 ¼P
products½miHiðTiÞ� �

P
reactants½miHiðTiÞ�, while We5¼�DG5

is the change in Gibbs free energy and We5 is the maxi-

mum (reversible) electrical work generated by the reac-

tion in CV5. The molar enthalpies of formation, HiðTiÞ,
are obtained from tabulated values [17,18] at T6 for O2ðgÞ,

T4 for Hþ
ðaqÞ and T5 for H2OðlÞ at 1 atm. The change in the

Gibbs free energy DG5 for the reaction of Eq. (19) is

calculated by using Eq. (13). The CV5 reaction quotient

is therefore Q5 ¼ f½Hþ
ðaqÞ�

2p1=2O2
g�1

, where pO2
¼ p6;out. The

reversible electrical potential at the cathode results from

Eq. (15) after using Ve;c, V �
e;c, DG5, DG�

5, T5 and Q5 in

place of Ve;a, V �
e;a, DG3DG�

3, T3 and Q3.

The analysis for the cathode reaction layer (CV5)

follows the same path as for the anode reaction layer

(CV3). The potential losses are due to charge transfer
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and mass diffusion. The potential loss due to charge

transfer is obtained through Eq. (16), using A5;wet, io;c, ac,
gc and T5, in place of A3;wet, io;a, aa, ga and T3, respec-
tively. The potential loss due to mass diffusion is cal-

culated based on Eq. (17) by using gd;c, T5, A5;wet and

iLim;c, in place of gd;a, T3, A3;wet and iLim;a, respectively.

The limiting current density at the cathode (iLim;c), is

calculated using the same reasoning as for CV3, based

on Eq. (8), such that

iLim;c ¼
2Poxp1D6nF
MO2

L6Roxh6T1
: ð26Þ

Finally, the dimensionless electrical potential at the

cathode is eVi;c ¼ eVe;c � ~gc � j~gd;cj.
The mass balance for CV6 yields _mO2 ;out ¼ _mO2 ;in ¼

_mO2
and _nH2O ¼ _nH2O;out ¼ _nH2O;in ¼ _nO2

. The dimen-

sionless net heat transfer rate in CV6 results fromeQ6 ¼ �eQ56 þ _Qw6 þ eQ67 þ eQ6ohm, with eQ67 ¼ ~h7~Asð1�
/6Þðh7 � h6Þ, ~h7 ¼ h7V

2=3
T =ð _mrefcp;fÞ. The dimensionless

temperature for CV6 is given by

eQ6 þ wO2

cp;ox
cp;f

ðh7 � h6Þ þ eH ðh5ÞH2O
� eH ðh6ÞH2O

¼ 0:

ð27Þ

The dimensionless net heat transfer rate in CV7 iseQ7 ¼ �eQ67 þ eQw7 þ eQ7ohm. The balances for mass and

energy in the oxidant channel (CV7), the assumptions of

non-mixing flow, and the assumption that the space is

filled mainly with dry oxygen, yield _mH2O ¼ _mH2O;in ¼
_mH2O;out ¼ _nO2

MH2O and

eQ7 þ wox

cp;ox
cp;f

ðhox � h7Þ þ eH ðh6ÞH2O
� eH ðh7ÞH2O

¼ 0:

ð28Þ
3. Shape optimization

The model constructed in Section 2 allows us to

calculate the response of the fuel cell when its geometry

and operating parameters change. The model accounts

for temperature and pressure gradients and potential

losses. An important step in thermodynamic optimiza-

tion is the identification of realistic design constraints.

The volume constraint is

nxnynz ¼ 1: ð29Þ

Additional constraints are the stoichiometric ratios in

the fuel and oxidant channels, f1 and f7. Therefore the

inlet mass flow rates are wf ¼ f1wH2
and wox ¼ f7wO2

,

where wH2
and wO2

are obtained through Eqs. (5) and

(6).

Assuming that the channels are straight and suffi-

ciently slender, and using the ideal gas model, we can

express the pressure drops as
DPi ¼ ncfi
nz
ni

�
þ nz
nc

�
Pj
hi

Rf

Ri
~u2i ; ð30Þ

where i ¼ 1; 7 and j ¼ f ; ox, respectively. Here ~ui ¼
ð~ui;in þ ~ui;outÞ=2 is the channel dimensionless mean

velocity, defined as ~u ¼ u=ðRfT1Þ1=2, and f is the friction

factor. According to mass conservation, the dimen-

sionless mean velocities in the gas channels are

~u1 ¼
Ch1
~Ac1Pf

wf

�
�
wH2

2

�
; ð31Þ

~u7 ¼
RoxCh7
Rf
~Ac7Pox

wox

�
�
wO2

2

�
; ð32Þ

C ¼ ðRfT1Þ1=2 _mref

p1V 2=3
T

; ð33Þ

where ~Aci ¼ ncLcLi=V
2=3
T , i ¼ 1; 7, is the dimensionless

total duct cross section area in the fuel and oxidant

channels, respectively. Eqs. (30)–(33) deliver the pressure

drops, DP1 and DP7, and mean velocities for both fuel

and oxidant gas channels for each tested geometry

during the shape optimization process.

The model also requires the evaluation of the friction

factor and heat transfer coefficients in the gas channels.

For the laminar regime (ReDh
< 2300) we used the cor-

relations [24]

fiReDh;i
¼ 24ð1� 1:3553di þ 1:9467d2i � 1:7012d3i

þ 0:9564d4i � 0:2537d5i Þ; ð34Þ

hiDh;i

ki
¼ 7:541ð1� 2:610di þ 4:970d2i � 5:119d3i

þ 2:702d4i � 0:548d5i Þ; ð35Þ

where di ¼ Lc=Li, for Lc 6 Li and di ¼ Li=Lc, for Lc > Li;

Dh;i ¼ 2LcLi=ðLc þ LiÞ, ReDh;i ¼ uiDh;iqi=li and i ¼ 1; 7.
The correlations used for the turbulent regime were

[25]

fi ¼ 0:079Re�1=4
Dh

ð2300 < ReDh;i < 2� 104Þ; ð36Þ

hiDh;i

ki
¼

ðfi=2ÞðReDh;i � 103ÞPri
1þ 12:7ðfi=2Þ1=2ðPr2=3 � 1Þ

ð2300 < ReDh;i < 5� 106Þ; ð37Þ

where Pr is the gas Prandtl number, lcp=k.
According to Fig. 1, the architecture of the fuel cell

is determined completely by the internal structure

(Lx ¼ 2Lb þ
P7

i¼1 Li) and the external shape ðLx; Ly ; LzÞ
for a constrained volume, VT. The optimization objective

is to determine the system architecture: the optimal

allocation of volume, such that the total net power is

maximized. The appropriate figure of merit for evalu-

ating the performance of a fuel cell is the polarization
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curve, i.e., the fuel cell total potential as a function of

current,

eVi ¼ eVi;a þ eVi;c � ~gohm: ð38Þ

The pumping power eWp is required to supply the fuel cell

with fuel and oxidant. Therefore the total net power

(available for utilization) of the fuel cell is

eWnet ¼ eW � eWp; ð39Þ

where

eW ¼ eVi
~I; ð40Þ

eWp ¼ wfSf
h1
P1

DP1 þ woxSox
h7
P7

DP7; ð41Þ

Si ¼
_mrefT1Ri

Vref Iref
; i ¼ f ; ox: ð42Þ

The objective function defined by Eq. (39) depends

on the internal structure and the external shape of the

fuel cell. The mathematical model allows the computa-

tion of the total net power of the fuel cell, eWnet. This is

possible to achieve as soon as the physical values (Table

1) and a set of geometric internal (1 ¼ 2nb=nx þ
P7

i¼1 ni=

nx) and external (ny=nx and nz=nx) parameters are chosen

for the overall system.

The maximum (theoretical) fuel cell efficiency is given

by

gi ¼
DeG3 þ DeG5

D eH3 þ D eH5

: ð43Þ

The actual first-law efficiency of the fuel cell is

gI ¼ E
eW

D eH3 þ D eH5

: ð44Þ
Table 1

Physical properties used as reference case in the numerical

optimization of the overall system

B ¼ 0:156 [28] q ¼ 1:5

cp;f ¼ 14:95 kJ kg�1 K�1 Rf ¼ 4:157 kJ kg�1 K�1

cp;ox ¼ 0:91875 kJ kg�1 K�1 Rox ¼ 0:2598 kJ kg�1 K�1

cv;f ¼ 10:8 kJ kg�1 K�1 Tf ; Tox; T1 ¼ 298:15 K

cv;ox ¼ 0:659375 kJ kg�1K�1 Uwi ¼ 50 Wm�2 K�1, i ¼ 1; 7

i0;a; i0;c ¼ 10 Am�2 Vref ¼ 1 V

Iref ¼ 1 A VT ¼ 2:25� 10�5 m3

kf ¼ 0:2 Wm�1 K�1 VT;ref ¼ 10�5 m3

kox ¼ 0:033 Wm�1 K�1 aa; ac ¼ 0:5

kp ¼ 0:21 Wm�1 K�1 l1 ¼ 10�5 Pa s

K2;K6 ¼ 4� 10�14 m2 l7 ¼ 2:4� 10�5 Pa s

K3;K5 ¼ 4� 10�16 m2 r1; r7 ¼ 1:388� 106 X�1 m�1

_mref ¼ 10�4 kg s�1 r2; r6 ¼ 4000 X�1 m�1

pf , p1 ¼ 0:1 MPa /2;/6 ¼ 0:4

pox ¼ 0:12 MPa /3;/5 ¼ 0:2
where E ¼ Vref Iref=ð _mrefcp;fT1Þ. The second-law efficiency

is defined as the ratio of the actual electrical power to the

reversible electrical power,

gII ¼ E
eW

DeG3 þ DeG5

: ð45Þ

The net efficiency of the fuel cell is

gnet ¼ E
eWnet

D eH3 þ D eH5

: ð46Þ

In a previous study, Vargas and Bejan [13] found the

optimal distribution of the compartments shown in Fig.

1 for fuel cell maximum power under a volume con-

straint, for an alkaline fuel cell. However, the cross

section area of the fuel cell was kept fixed in the process,

therefore the external shape was not allowed to vary. In

the present study, a PEM fuel cell is investigated, and

the external shape of the cell is allowed to vary. There-

fore, the optimization procedure starts by seeking the

optimal internal structure of the fuel cell for a range of

external shapes (ny=nx and nz=nx).
In the optimization procedure the total electrode

wetted area varies. Because the total volume is fixed, the

solution to the optimization problem is given directly in

terms of net power and current, instead of power and

current densities.

The optimization of internal structure is executed

according to the lower part of Fig. 2. First, geometrical

symmetry is assumed for the electrodes, i.e., the anode

and cathode are assumed to have the same thickness.

The thicknesses of the diffusion and reaction layers of

the cathode and anode are varied simultaneously subject

to fixed ratios of cathode thickness (y2) and anode

thickness (y6) to total length,

n2=nx þ n3=nx ¼ y2; n5=nx þ n6=nx ¼ y6: ð47Þ

The ratio of overall thickness to total length of the fuel

cell is also fixed,

y2 þ y4 þ y6 ¼ 0:8: ð48Þ

Under the simplifying hypotheses assumed, the internal

structure optimization problem is reduced to one

degree of freedom, i.e., the ratio n3=nx ¼ n5=nx. The end
result is the optimized configuration of the fuel cell

electrodes ðn2; n3; n5; n6Þopt, for which the net power is

maximum.

Next the optimization focuses on the external shape.

The optimized internal structure is kept fixed, i.e., (1 ¼
2nb=nx þ

P7

i¼1 ni=nx), and the external shape is varied in

the process, i.e., (ny=nx and nz=nx). The objective is to

find (ny=nx and nz=nx)opt such that eWnet is maximum. The

model constructed in Section 2 allows us to calculate the

net power as a function of current, Eq. (39). The phys-

ical properties assumed in this calculation were sug-
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gested by previous studies and obtained from hand-

books [6,8,9,20,26], and are listed in Table 1. Eqs. (4),

(8), (10), (12), (20), (25), (27) and (28) form a system of

nine algebraic equations. The unknowns are hi and Pi,
i.e., the temperatures in the seven control volumes, and

the gas pressures in CV2 and CV6. Once the tempera-

tures and pressures are known, the electrical potentials

and power can be calculated for an assumed current

level.

Pressures are related to temperatures via Eq. (8). The

system reduces to seven nonlinear algebraic equations,

in which the unknowns are the temperatures of the seven

control volumes. This system is solved using a quasi-

Newton method [27]. For the cases studied in this paper,

the Newton iterative process required approximately

seven iterations to achieve convergence, such that the

Euclidean norm of the residual of the system was less

than 10�6. Because of this, the computational time re-

quired for one steady-state solution was short.
4. Results and discussion

For the internal structure optimization, the maxi-

mum power is sought by optimizing the geometry as
Fig. 3. (a) Example of polarization, total and net power output curve

PEM fuel cell considered in (a); and (c) the behavior of temperature
shown in the lower part of Fig. 2. For each investigated

geometry, the net power is calculated by starting from

open circuit (~I ¼ 0) and proceeding in increments of

D~I ¼ 10 until the net power is zero or the limiting cur-

rent level is reached. This procedure is illustrated in Fig.

3, which shows simulation results for one selected geo-

metric internal and external unit fuel cell configuration.

The total and net power, and polarization curves are

shown in Fig. 3a. According to the model, the actual

open circuit voltage is equal to the reversible cell po-

tential, because it has been assumed that no losses result

from species crossover from one electrode through the

electrolyte, and from internal currents. At low currents

there is an accentuated potential drop due to activation

polarization. This is followed by a region dominated by

ohmic polarization. At high currents, close to the lim-

iting current level, losses are due mainly to concentra-

tion polarization.

The total polarization is the sum of the electrical

potential produced at the anode and cathode, eVi;a andeVi;c. In a PEM fuel cell, the electrical potential produced

at the anode is negative. Conversely, the electrical po-

tential produced at the cathode is positive. The sum of

such potentials minus the potential loss due to electrical

resistance across the cell (ohmic loss) is the total fuel cell
s; (b) the ideal, first law, second law and net efficiencies for the

versus current, for the PEM fuel cell considered in (a) and (b).
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potential, eVi . The change in the Gibbs free energy of

reaction decreases as the temperature increases. There-

fore, according to Eq. (15) the reversible electrical po-

tential decreases as the temperature increases, what

happens when the current increases. Furthermore, as the

current increases the partial pressures of reactants at the

catalyst layers decrease in accordance with Eq. (8), be-

cause fuel and oxidant consumption increase, eventually

reaching the zero limit, where the voltage at the elec-

trode drops to zero via the Nernst effect, Eq. (15).

In Fig. 3a, the simulation was conducted until eWnet ¼
0, i.e., up to the point where the electrical power pro-

duced by the fuel cell matched the required pumping

power to supply fuel and oxidant at stoichiometric ratios

f1 ¼ f7 ¼ 2. Under such selected operating conditions

and geometry (ny=nx ¼ nz=nx ¼ 150), the fuel cell did not

reach the concentration polarization region where eithereVi;a or eVi;c would approach zero. The net power curve

exhibits a maximum at ~I � 260, which is central in the

evaluation of global performance, by balancing total

electrical power produced with required pumping power

to supply fuel and oxidant to the fuel cell. The maximum

net power is maximized during the optimization of

geometry.

Fig. 3b shows that the ideal efficiency (gi) decreases
as the current increases. This effect is due to the tem-

perature increase in the anode and cathode reaction

layers. The temperature increase is captured by the

present model. The first law efficiency is equal to the

ideal efficiency at open circuit (~I ¼ 0), and decrease

monotonically as the current increases. The second law

efficiency is equal to 1 (reversible operation––no losses)

at open circuit (~I ¼ 0), and also decrease monotonically

as the current increases. The net efficiency behavior

shows the effect of increasing current and therefore

pressure drop in the gas channels, i.e., the pumping

power increases and the net power decreases, reaching a

zero limit when eWnet ¼ 0.

The fuel flow rate increases as the current increases,

Eq. (5), therefore more heat is generated by the reactions

at the anode and cathode, and the temperature in-

creases. The temperatures in the fuel cell compartments

shown in Fig. 1 increase as current increases, as shown

in Fig. 3c, since more heat is generated by the electro-

chemical reaction and by Joule effect (ohmic heating).

The higher the current, the more accentuated are the

temperature spatial gradients between the fuel cell

compartments, even for the unit fuel cell considered in

Fig. 3, with the selected high geometric aspect ratio of

ny=nx ¼ nz=nx ¼ 150, i.e., with a small thickness com-

pared to width and height. Furtherly, since hydrogen is

roughly ten times more thermally conductive than oxy-

gen, the temperatures in the gas channels are consider-

ably different, which is also captured by the model.

Therefore, the fuel cell power and polarization curves

produced by the present model take into account all
internal spatial temperature gradients, which directly

affect the polarization curve and, therefore the total

electrical power output.

Fig. 4a illustrates the optimization of internal struc-

ture: the maximization of net power by varying n3=nx ¼
n5=nx subject to fixed y2 and y6, which also means that

the membrane thickness is fixed, i.e., y2 þ y4 þ y6 ¼ 0:8
(Fig. 2). The optimal allocation of thickness results from

the trade-off between two effects: activation polarization

losses and ohmic losses. As n3=nx and n5=nx increase, the
electrode wetted areas increase and the activation losses

decrease. On the other hand, the ohmic losses increase

because the ionomer penetrates deeper into the elec-

trodes, increasing electrical resistance. Another inter-

esting phenomenon is that the ionomer electrical

conductive increases as temperature increases at higher

current levels, and with water content increase as well,

therefore reducing ohmic loss at higher temperatures,

which is represented by Eq. (21). The results of those

trade-offs observed during internal geometry variation in

the optimization process is investigated in Fig. 4a which

shows net power maxima for two fuel cell external

geometric aspect ratios and ionomer water contents. The

internal structure optimization was performed for given

stoichiometric ratios, two values of the unit fuel cell

external aspect ratio ny=nx ¼ nz=nx, i.e., 30 and 50, for

two different ionomer water content conditions, i.e.,

ðka; kcÞ ¼ ð10; 14Þ and ðka; kcÞ ¼ ð16; 20Þ. At higher io-

nomer water content the maximum fuel cell net power is

higher, mainly due to the fact that ionomer electrical

conductivity increases with water content and, therefore

ohmic losses decrease. An important observation is that

the optimal internal structure, represented by ðn3=nx ¼
n5=nxÞopt, did not vary with the variation of the external

shape ny=nx ¼ nz=nx for a particular water content.

The results of the internal structure optimization

with respect to the average membrane water content,

k ¼ ðka þ kcÞ=2, are shown in Fig. 4b, for different

external shapes ny=nx ¼ nz=nx. The optimal internal

structure, represented by ðn3=nx ¼ n5=nxÞopt, is indepen-

dent of external shape for all tested water contents. As

ny=nx ¼ nz=nx increases the net power maximized with

respect to n3=nx ¼ n5=nx, eWnet;m, increases. The same ef-

fect is also observed as the water content increases,

mainly due to smaller ohmic losses at higher water

contents, as discussed in the previous paragraph.

The main conclusion at this point is that ðn3=nx ¼
n5=nxÞopt is nearly the same in Fig. 4b for all tested

membrane water contents and external shapes, meaning

that the optimal internal structure is relatively insensi-

tive to changes in both k and ny=nx ¼ nz=nx. This is

important to proceed to the fuel cell external shape

optimization, which is illustrated in Fig. 5. Based on the

observation that the optimized inner parameters (n3=nx,
n5=nx ffi 0:01) are practically insensitive, i.e., ‘‘robust’’ to

changes in the external shape, the fuel cell external shape
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optimization procedure is therefore conducted for a

fixed internal shape structure defined by ðn3=nx ¼
n5=nxÞopt ¼ 0:01.

Taken together, the results of Figs. 3 and 4 document

the performance and the optimized internal architecture

of a unit fuel cell over a range of external parameters.

These results hold for the reference properties listed in

Table 1, where the total volume was set at VT ¼ 2:25�
10�5 m3. For the convenience of presenting dimension-

less results and recognizing the fuel cell net power varies

with size (total volume), a dimensionless fuel cell total

volume is defined as eVT ¼ VT=VT;ref , where a reference

total volume was set at VT;ref ¼ 10�5 m3 also in Table 1.

Fig. 5a shows that for the optimized internal struc-

ture, and a given ionomer water content, the once
maximized fuel cell net power with respect to internal

structure ( eWnet;m) can be maximized with respect to

external shape under a fixed volume constraint, i.e.,eVT ¼ 2:25. The occurrence of a net power maximum

with respect to fuel cell external shape is explained by

analyzing two extremes: (i) small ny=nx ¼ nz=nx implies

that nx is large, eW is small due to large flow resistances

in the x-direction, and eWp is small due to a small swept

length nz, therefore eWnet;m ! 0, and (ii) large ny=nx ¼
nz=nx implies that nx is small, eW is large due to small flow

resistances in the x-direction and also large wetted areas

at the electrodes, but eWp is also large due to a large

swept length nz and small hydraulic diameters Dh,

therefore eWnet;m ! 0 at this extreme too. Hence, there

must exist an intermediate and optimal ny=nx ¼ nz=nx



Fig. 5. (a) The external structure optimization and the dependence on stoichiometric ratio for ðka; kcÞ ¼ ð16; 20Þ, and (b) the results of

the external structure optimization with respect to the stoichiometric ratios, f1 ¼ f7, for ðka; kcÞ ¼ ð16; 20Þ.
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geometric configuration such that eWnet;m is maximum,

which balances the trade-off between electrical power

output and pumping power to supply fuel and oxidant

to the fuel cell according to Eq. (39).

The fuel cell net power is plotted in Fig. 5a as a

function of ny=nx ¼ nz=nx for three different stoichio-

metric ratios regimes, f1 ¼ f7. For all stoichiometric

ratios, a maximum net power, eWnet;mm, is observed,

determining the optimal external fuel cell structure,

represented by ðny=nx ¼ nz=nxÞopt. As the stoichiometric

ratios increase, the net power decreases, since the fuel

and oxidant mass flow rates in the gas channels increase,

and therefore pressure drops and pumping power in-

crease.
The optimization results of Fig. 5a are plotted in

Fig. 5b as functions of the stoichiometric ratios. BotheWnet;mm and ðny=nx ¼ nz=nxÞopt decrease monotonically as

the stoichiometric ratios increase. The reason for that is

that as the stoichiometric ratios increase the pumping

power increases as well, therefore the optimal external

geometry defined by ðny=nx ¼ nz=nxÞopt shows smaller

values such that the swept lengths in the gas channels

decrease and hydraulic diameters increase, therefore

reducing pressure drops and pumping power.

In a subsequent phase of this study, the volume

constraint eVT ¼ 2:25 was relaxed, and eVT was varied

over the range 1–10, for stoichiometric ratios f1 ¼ f7 ¼ 2.

This variation is indicated by the three curves of Fig. 6a.



Fig. 6. (a) The external structure optimization and the dependence on total fuel cell volume, for f1 ¼ f7 ¼ 2 and ðka; kcÞ ¼ ð16; 20Þ, and
(b) the results of the external structure optimization with respect to total fuel cell volume, eVT, for f1 ¼ f7 ¼ 2 and ðka; kcÞ ¼ ð16; 20Þ.
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For that, two additional values of eVT, i.e., 1 and 10 were

investigated and the results plotted together with the

previously obtained results for eVT ¼ 2:25. The three

resulting curves exhibit maxima with respect to the

external shape aspect ratios. The fuel cell net power in-

creases as eVT increases. Additional results were pro-

duced to cover the entire range 16 eVT 6 10, which

allowed the twice maximized net power and the opti-

mized external shape aspect ratios to be plotted in Fig.

6b as functions of eVT. The twice maximized net power

increases monotonically with total volume. The opti-

mized external shape aspect ratios also increase as the

fuel cell total volume increases, but at a smaller rate,

staying approximately within the range 906 ðny=nx ¼
nz=nxÞopt 6 130. So, for the investigated total volume

range, the optimized external shape is therefore ðny=nx ¼
nz=nxÞopt ffi 100.
5. Conclusions

In this paper we showed that the internal and exter-

nal structure of a PEM fuel cell can be optimized so that

the net power is maximized. We demonstrated this at the

most elemental level, by constructing a model for fluid

flow, mass and heat transfer in a unit PEM fuel cell,

which takes into account spatial temperature and pres-

sure gradients (Fig. 1). The internal structure has an
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optimal allocation such that wetted area in the reac-

tion layers and electrical resistance are optimally bal-

anced for maximum electrical power. Additionally, a

three-dimensional flow space with the dimensions Lz

and Ly in the plane perpendicular to Lx was considered

and the total volume was fixed. The new degrees of

freedom, i.e., the aspect ratios Ly=Lx and Lz=Lx, allowed

for the optimization of the system external shape, in

addition to the internal structure. As a result, it was also

found an external shape defined by dimensionless

external geometric aspect ratios, ny=nx and nz=nx, such
that electrical and pumping power are optimally

balanced for maximum net power. All optimization re-

sults were presented non-dimensionally for the sake of

generality.

Conceptually, we showed that trade-offs exist, and

that from them results the internal structure and exter-

nal shape––the relative sizes and spacings––of flow sys-

tems, i.e., constructal design [5,13]. In practice, such

trade-offs must be pursued based on models that corre-

spond to real applications. Based even on the simplified

model used in this paper, it is evident that significant

optima exist, and must be identified accurately. The

current optimization results reported in this study,

clearly demonstrate that even for a unit PEM fuel cell,

gas supply causes pressure drops that induce consider-

able power consumption that need to be taken into ac-

count in fuel cell design.

The main conclusion is that constructal optimization

procedure needs to be implemented to optimize thermal

and water management, and the flowfield design, which

will lead to the best internal and external shape of a fuel

cell stack for maximum power density and/or efficiency.

In general, the flowfield should be designed to minimize

pressure drop (reducing parasitic pump requirements),

while providing adequate and evenly distributed mass

transfer through the carbon diffusion layer to the cata-

lyst surface for reaction. The fuel cell stack needs to be

optimally ‘‘constructed’’ from its smallest (elemental)

scale, i.e., the unit fuel cell, as shown in Fig. 1. Instead of

the conventional serpentine, parallel and interdigitated

flow configurations utilized in current fuel cell stacks [1],

it is expected that constructal optimization will lead to

high-density constructions with new scaling laws that

are dictated by dendritic (space-filling, fractal-like) flow

structures.
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